По теореме косинусов: Большая диагональ против угла в 120° D²=10²+10²-2·10·10·cos120°=100+100+100=300 D=10√3 Меньшая диагональ против угла в 60° d²=10²+10²-2·10·10·cos60°=100+100-100=100 d=10 ответ. 10 см и 10√3см
ВD - биссектриса и делит угол В на две равные части, поэтому дуги АD и СD, на которые опираются половины вписанного угла В, равны. По условию АD =АС . Треугольник АСD равнобедренный. ∠ АСD=∠ АDС. АС=АD равные хорды и стягивают равные дуги. Значит, дуга АВС=дуге АD. Но ◡АD=◡СD как дуги, на которые опираются равные углы АВD и СВD ⇒ Точки А, С, D делят окружность на три равные дуги с градусной мерой 360º:3=120º Вписанный угол АВС опирается на дугу АDС=120º*2=240º Вписанный угол равен половине дуги, на которую опирается. ⇒ Угол АВС=240º: 2=120º
Числитель - это биквадратный многочлен. Его можно разложить на множители: Заменим х² = у. Получаем квадратный трёхчлен: у² - 5у + 4. Приравняем его нулю. у² - 5у + 4 = 0. Квадратное уравнение, решаем относительно y: Ищем дискриминант:D=(-5)^2-4*1*4=25-4*4=25-16=9; Дискриминант больше 0, уравнение имеет 2 корня: y_1=(2root9-(-5))/(2*1)=(3-(-5))/2=(3+5)/2=8/2=4; y_2=(-2root9-(-5))/(2*1)=(-3-(-5))/2=(-3+5)/2=2/2=1. Отсюда х = +-2 и х = +-1. Числитель приобретает вид (х+1)(х-1)(х+2)(х-2). После сокращения у = (х-1)(х-2). Это даёт 2 корня: х = 1 и х = 2. График - парабола у = х² - 3х + 2. Осталось найти касательную, проходящую через начало координат. Примерно, это у = -5,8х.
Большая диагональ против угла в 120°
D²=10²+10²-2·10·10·cos120°=100+100+100=300
D=10√3
Меньшая диагональ против угла в 60°
d²=10²+10²-2·10·10·cos60°=100+100-100=100
d=10
ответ. 10 см и 10√3см