Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
1)Периметр треугольника ∆ABC равен сумме длин его сторон. P = a + b + c Периметр квадрата равен произведению длины его стороны на четыре.P = 4a (а-сторона, Р-периметр). Ромб также находится. Периметр прямоугольника ABCD равен удвоенной сумме сторон, прилежащих к одному углу.P = 2(a + b). Параллелограмм также находится. Периметр трапеции равен сумме длин ее сторон.P = a + b + c + d Окружность - 2 π r (π число пи, r радиус) Формул площадей очень много. 2) Для выпуклого n-угольника сумма всех углов равна 180°(n-2). n - кол-во сторон.
ответ:1) 90-47= 43 . Тому що сума кутів в прямокутному трикутнику 90 ° . Відповідь: А).
2)Б)
3. 65,3
4) 2х+7х=90
9х=90
х=10
Кут 1 = 2*10=20
Кут 2=10*7=70
5) х+х+4,5=90
2х+4,5=90
2х=90-4,5
2х=85,5
х=85,5:2
х=42,75 . 42,75+4,5= 47,25
Объяснение: