3061.
Нижний цилиндр: V = πR²H = π · 2² · 1 = 4π
Если бы верхний цилиндр был бы полным, то его объем тоже был бы 4π, но у нас половинка, поэтому ½ * 4π = 2π.
Общий объем: 4π + 2π = 6π.
V/π = 6
3062. Аналогично, нижний 9π, верхний 4.5π. Сумма = 13.5π. V/π=13.5
3063. И опять также Vнижний=16, верхний 8. Сумма = 24π. V/π=24
3064.
Новый сценарий. Весь объем V = π·5²·4= 100π
Объем вырезанной трубы V=π·2²·4=16π
Цилиндр с вырезом: 100π-16π=84π.
V/π = 84
3065.
Тот же сценарий, что и в № 3064.
Весь объем V = π·6²·5=180π
V(выреза) = π·2²·5 = 20π
V(C вырезом) = V-V(выреза) = 180π - 20π = 160π
V/π = 160
Раз обсуждение теперь сразу стирается, я сюда напишу, хотя кое-кому не понравится :))) Посмотрите чертеж, там все предельно ясно, обозначения пояснять не буду. НЕ ЗАБЫВАЙТЕ, ЧТО ЧЕРТЕЖ ПЛОСКИЙ.
Итак, PR = TQ = KN/2 - это средние линии в треугольниках. Аналогично RQ = PT = LM/2. Поэтому PRQT - параллелограмм. В нем задана длина отрезка RT = 1, надо найти PQ. Забавно, но уже ясно, что от величины LN ответ не зависит - все определяется отрезками KN и LM. Мы можем смело изменять LN, результат не изменится. Однако у смелости есть пределы - фигура обязана оставаться выпуклой. На рисунке справа я привел треугольник, который является вырожденным 4угольником из задачи. Если на обеих рисунках KN и LM попарно равны, то и PQ равны.
ОДНАКО К РЕШЕНИЮ ЭТО НЕ ПРИБЛИЖАЕТ :))) Так, игра ума.
Но сделав одну трансформацию - которая не меняет ответа, я тут же нашел другую - которая ответ меняет. Увы.
Итак. Вот вам решение.
На втором прикрепленном чертеже показаны 2 4угольника (KLMN и K1LM1N), полностью удовлетворяющие условиям задачи и имеющие общий отрезок RT. При этом PQ не равно P1Q1. Это доказывает, что задача не может быть решена.
Эти 3 строчки являются решением... однако все еще проще. На самом деле, из чертежа понятно, что если ввести 2 вектора k и i, как показано на первом чертеже, то вектор RT = (k - i)/2; а вектор PQ = (k + i)/2; Зная модуль RT, нельзя вычислить PQ. Поэтому с точки зрения векторной алгебры нерешаемость задачи вообще доказывается элементарно без всяких дополнительных построений.