Николай Алексеевич Некрасов (1821 — 1877(78)) – классик русской поэзии, писатель и публицист. Он был революционным демократом, редактором и издателем журнала «Современник» (1847-1866) и редактором журнала «Отечественные записки» (1868). Одним из самых главных и известных произведений писателя является поэма «Кому на Руси жить хорошо».
Объяснение:Николай Алексеевич Некрасов (1821 — 1877(78)) – классик русской поэзии, писатель и публицист. Он был революционным демократом, редактором и издателем журнала «Современник» (1847-1866) и редактором журнала «Отечественные записки» (1868). Одним из самых главных и известных произведений писателя является поэма «Кому на Руси жить хорошо».
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².
Объяснение:
Приветик.Здесь правило о секущей и касательной, проходящих через общую точку.
1)МС²=МВ*МА,
81=6*МА,
МА=13,5, АВ=МА-МВ, АВ=13,5-6=7,5.
2)МС²=МВ*МА, но МА= МВ+ВА, МА=МВ+6.
(√91)²=МВ*(МВ+6)
91=МВ²+6МВ. Пусть МВ=х, х²+6х-91=0
Д=в²-4ас, Д=36+364=400, х=7 , МВ=7( другой корень -13 для геометрии не подходит)