Объяснение:
№1Пусть дан ΔABC, тогда
AB, АС - боковые стороны треугольника
BC - основание треугольника
AB=AC - треугольник равнобедренный
Пусть х будет основание треугольника.
Тогда х+30 будет боковая сторона треугольника.
Периметр равен 150 см.
Составим и решим уравнение (найдём основание треугольника):
х+х+30+х+30=150
3х+60=150
3х=150-60
3х=90
х=90/3
х=30 см.
Боковая сторона треугольника будет равна х+30=30+30=60 см.
ответ: AB=AC=60 cм, ВС= 30 см.
№2Пусть дан ΔABC, тогда
AB, АС - боковые стороны треугольника
BC - основание треугольника
AB=AC - треугольник равнобедренный
Пусть х будет основание треугольника.
Тогда 3х будет боковая сторона треугольника.
Периметр равен 49 см.
Составим и решим уравнение (найдём основание треугольника):
х+3х+3х=49
7х=49
х=49/7
х=7 см.
Боковая сторона треугольника будет равна 3х=7*3=21 см.
ответ: AB=AC=21 cм, ВС=7 см.
Высота этого треугольника, опущенная на гипотенузу из вершины прямого угла, равна 9:6·2= 3 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Найдем эти отрезки, обозначив один из них х, другой 6-х:
9=х(6-х)
9=6х-х²
3²= x *(6-x)
х²-6х+9=0
Решив это квадратное уравнение, найдем два одинаковых корня х=3
Следовательно, отрезки, на которые высота делит гипотенузу, равны, и треугольник - равнобедренный.
Высота равна 3, половина гипотенузы=3.
Из прямоугольного треугольника с катетами 3 и 3 найдем боковую сторону ( катет исходного треугольника)
х²=3²+3²=18
х= √18=3√2
Катеты равны 3√2
Проверка:
Площадь найдем половиной произведения катетов:
S= (3√2)·(3√2):2=9·2:2=9 cм²
Объяснение:кутС=180°-35°-55°=90°-это прямоугольный ΔАВС