Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
ответ: 54 см
Объяснение:
Проведем прямую ВК, параллельную диагонали АС, К - точка пересечения этой прямой с прямой AD.
ВК ║АС, AD ║ ВС, значит КВСА - параллелограмм, ⇒
АК = ВС = 5 см,
ВК = АС = 9 см.
Если ВН высота трапеции, то
Sabcd = 1/2 (AD + BC) · BH
Рассмотрим ΔКВD:
KB = 9 см, BD = 12 см, KD = КА + AD = 5 + 10 = 15 см, ВН является высотой треугольника.
Skbd = 1/2 KD · BH = 1/2 (KA + AD) · BH = 1/2 (BC + AD) · BH
Сравнивая формулу площади трапеции и площади треугольника видим, что
Sabcd = Skbd.
Найдем площадь треугольника KBD по формуле Герона.
p = (KB + BD + KD)/2 = (9 + 12 + 15)/2 = 18
Sabcd = 54 см²