Пусть дан треугольник ABC, у которого ∠A -тупой, CF и BE - его высоты, проведенные к сторонам AB и AC соответственно, и пусть продолжения этих высот пересекаются в точке D. Т.к. угол А - тупой, то D лежит вне ABC. Тогда ∠CAB=180°-∠CAF. Но ∠CAF=∠CDE, т.к. треугольники CAF и CDE - прямоугольные с общим углом С, т.е. ∠CAB=180°-∠CDE. Значит sin(∠CAB)=sin(180°-∠CDE)=sin(∠CDE)=sin(∠CDB). По теореме синусов радиус окружности, описанной около ABC, равен BC/(2sin(∠CAB)), а радиус окружности, описанной около CDB равен BC/(2sin(∠CDB)). В силу равенства синусов, получаем равенство радиусов этих окружностей, что и требовалось.
1)Треугольник АВС - прямоугольный, уголС=90, уголА=60, уголВ=90-60=30, АС=12, АВ=2АС=2*12=24, ВМ=4, АМ=АВ-ВМ=24-4=20, КМ перпендикулярна АВ (точка К на продолжении АС), треугольник АМК прямоугольный, уголАКМ=90-уголА=90-60=30, АМ=20=катет, АК гипотенуза=2*АМ=2*20=40, СК=АК-АС=40-12=28. 2)Из прямоугольных треугольников ВАА1 и АСС1 имеем угол А = углу В. Треугольник АВС равнобедренный. СС1 - биссектриса=высота. А расстояние от любой точки биссектрисы до сторон угла одинаковые. Т.е. тоска О одинаково удалена от АС, ВС и АВ. , но в то же время СС1 и АА1 - высоты. Т.е. треугольник АВС - равносторонний. Периметр его равен 6 см.
Тогда ∠CAB=180°-∠CAF. Но ∠CAF=∠CDE, т.к. треугольники CAF и CDE - прямоугольные с общим углом С, т.е. ∠CAB=180°-∠CDE. Значит sin(∠CAB)=sin(180°-∠CDE)=sin(∠CDE)=sin(∠CDB). По теореме синусов радиус окружности, описанной около ABC, равен BC/(2sin(∠CAB)), а радиус окружности, описанной около CDB равен BC/(2sin(∠CDB)). В силу равенства синусов, получаем равенство радиусов этих окружностей, что и требовалось.