Дана правильная шестиугольная пирамида со стороной основания а = 10 см.
Длина отрезка, соединяющего вершину пирамиды с центром основания (а это высота пирамиды Н), равна √69 .
Найти: a) боковое ребро L и апофему A;
Проекция бокового ребра на основание равна радиусу описанной окружности и равна стороне основания.
L = √(69 + 100) = √169 = 13.
A = √(169 - (10/2)²) = √(169 - 25) = √144 = 12.
б) боковую поверхность: Sбок = (1/2)РА = (1/2)*6*10*12 = 360 кв.ед.
в) полную поверхность пирамиды.
Sосн = 3√3*100/2 = 150√3 кв.ед.
S = So + Sбок = (150√3 + 360) кв.ед.
ответ: (прописывать длины каждого из 12 ребер немного лень, напишу длины измерений)
ширина: 8
длина: 14
высота: 12
Объяснение:
Поскольку AK - биссектриса прямого угла, то из принципа накрест лежащих углов при параллельных прямых имеем:
∠BAK = ∠KAD = ∠BKA = 45°
То есть ΔABK - равнобедренный.
Таким образом:
AB = BK = 8
BC = BK + KC = 8 + 6 = 14
У прямоугольного параллелепипеда 12 ребер, а именно по 4 ребра каждого из 3-x измерений.
Тогда сумма длин его измерений равна:
136/4 = 34 cм
Откуда найдем высоту параллелепипеда:
h = 34 - 8 - 14 = 12