Сначало найдём угол D:
Сумма углов треугольника равна 180°
=> ∠D = 180 - (31 + 69) = 80°
Против большего угла лежит большая сторона.
Против меньшего угла лежит меньшая сторона.
∠D - наибольший угол => СЕ - наибольшая сторона.
∠Е - средний угол => CD - средняя сторона.
∠С - наименьший угол => ED - наименьшая сторона.
1) неверно, так как DE < CD (DE - наименьшая, а CD - средняя)
2) неверно, так как CD < CE (CD - средняя, а СЕ - наибольшая)
3) верно (CE - наибольшая, а DE - наименьшая)
4) неверно, так как DE < CE (DE - наименьшая, а СЕ - наибольшая)
ответ: 3)
5 см
Объяснение:
1) Опустим перпендикуляр из точки М на сторону АС.
МК - кратчайшее расстояние от М до АС, равное согласно условию задачи, 2√13 см.
2) Так как МВ перпендикулярно плоскости треугольника АВС, то МВ⊥ВК - проекции МК на плоскость АВС, ∠МВК - прямой, ВК⊥АС, ВК - высота ΔАВС.
3) Находим ВК как высоту правильного треугольника АВС:
ВК = (a√3)/2, где а - сторона правильного треугольника; а = 6 см, согласно условию задачи;
ВК = (a√3)/2 = (6√3)/2 = 3√3 см
4) В прямоугольном треугольнике МВК:
МВ и ВК являются катетами, а МК - является гипотенузой.
Согласно теореме Пифагора:
МВ² = МК² - ВК²
МВ² = (2√13)² - (3√3)² = (4·13 - 9·3) = 52-27 = 25
МВ = √25 = 5 см
ответ: 5 см
Відповідь:
Геометричне місце точок, рівновіддалених від двох даних точок, є пряма, перпендикулярна відрізку, що з'єднує ці точки, і проходить через його середину.
Пояснення: