М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
клубничка125
клубничка125
24.02.2022 20:53 •  Геометрия

В треугольнике АВС угол С – прямой, угол А равен 60 градусов, АВ = 28 см. Проведена окружность с центром в точке А. Каким должен быть ее радиус, чтобы она касалась прямой ВС?​

👇
Открыть все ответы
Ответ:
morginen
morginen
24.02.2022
1) В(-2;4), М(3;-1)
Координаты середины отрезка ВС (точки М) находятся по формуле:
Xm = (Xc + Xb)/2, Ym = (Yc + Yb)/2. Отсюда
Xc=2*Xm-Xb или 6-(-2)=8;
Yc=2*Ym-Yb или -2-4 = -6.  Значит С(8;-6).
2) В(4;-3) К(1;5)
Координаты середины отрезка ВМ (точки К) находятся по формуле:
Xk = (Xm + Xb)/2, Yk = (Ym + Yb)/2. Отсюда
Xm=2*Xk-Xb или 2-4=-2;
Ym=2*Yk-Yb или 10-(-3) = 13.  Значит М(-2;13).
Тогда координаты точки С:
Xc=2*Xm-Xb или -4-4=-8;
Yc=2*Ym-Yb или 26-(-3) = 29.  Значит С(-8;29).
ответ: 1) С(8;-6)  2) С(-8;29)
4,8(86 оценок)
Ответ:
ккк130
ккк130
24.02.2022

1.

P(4;3), T(-2;5).

Используем уравнение прямой, проходящей через две точки.

Если даны две точки A(x₁; y₁) и B(x₂; y₂), тогда уравнение прямой, проходящей через эти две точки будет

\frac{x-x_1}{x_2 - x_1} = \frac{y-y_1}{y_2 - y_1}

То есть у нас даны две точки P(4;3) и T(-2;5), уравнение прямой, проходящей через них будет

\frac{x-4}{-2-4} = \frac{y-3}{5-3}

\frac{x-4}{-6} = \frac{y-3}{2}

-\frac{x-4}{3} = y-3

-(x-4) = 3·(y-3),

4 - x = 3y - 9,

3y + x - 9 - 4 = 0,

x + 3y - 13 = 0.

Можно сделать проверку: подставим координаты каждой точки в уравнение и проверим выполнение равенства.

P(4;3):

4 + 3·3 - 13 = 4 + 9 - 13 = 0. Верно.

T(-2;5):

(-2) + 3·5 - 13 = -2 + 15 - 13 = 0. Верно.

ответ. x + 3y - 13 = 0.

2.

x + 3y - 13 = 0,

Уравнение оси Ox (оси абсцисс): y = 0. Подставим это в уравнение прямой и получим x + 3·0 - 13 = 0, ⇔ x = 13.

Итак, пересечение прямой с осью Ox дает точку (13;0).

Уравнение оси Oy (оси ординат): x = 0. Подставим это в уравнение прямой и получим 0 + 3y - 13 = 0, ⇔ y = \frac{13}{3}.

Итак, пересечение прямой с осью Oy в точке (0; \frac{13}{3}).

3.

Дана прямая x - y + 2 = 0 и окружность (x-2)² + (y-1)² = 9.

Чтобы найти координаты точек пересечения решим систему двух уравнений на два неизвестных.

Из уравнения прямой находим y = x+2, подставим это в уравнение окружности: (x-2)² + ( x+2 - 1)² = 9,

(x-2)² + (x+1)² = 9,

x² - 4x + 4 + x² + 2x + 1 = 9,

2x² - 2x + 5 - 9 = 0,

2x² - 2x - 4 = 0,

x² - x - 2 = 0,

D = (-1)² - 4·1·(-2) = 1 + 8 = 9 = 3²,

x = \frac{1 \pm 3}{2}

x_1 = \frac{1 - 3}{2} = \frac{-2}{2} = -1

y_1 = x_1 + 2 = -1 + 2 = 1

Итак, координаты первой точки (-1; 1).

x_2 = \frac{1 + 3}{2} = \frac{4}{2} = 2.

y_2 = x_2 + 2 = 2 + 2 = 4

Итак, координаты второй точки (2; 4).

ответ. (-1; 1), (2; 4).

4,7(69 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ