Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
1) ∠A=∠C=90°, т.к опираются на диаметр. Пусть точка К - точка пересечения хорды АС и диаметра. Рассмотрим тр-к АКО- прямоугольный, у которого катет в 2 раза меньше гипотенузы, значит один из углов 30°, а другой -60°. Рассмотрим тр-к АВО: он равнобедренный с углом 60°, а значит все его углы равны - 60°. Рассм. треугольник АВС - равнобедренный т.к ВК - медиана и высота, тогда ВК - бисектриса ∠АВС, тогда ∠АВС=120°. Четырехугольник ABCD - вписанный, тогда ∠В+∠D=180°, тогда ∠D=60° 2) Найдем боковую сторону треугольника по теореме Пифагора. Она равна - 15 см. Площадь этого треугольника равна ·9·24=108см², а периметр 54 см. r= где р - полупериметр r=4 см R= R= 12,5 см
3) Чтобы найти AK, нужно найти MK.
MK=MD-AC,=9-5=4см.
Найдём AK за теоремой Пифагора, тоесть AK²=AM²-MK²
AK²=20-16=4см, AK=2см.
4) Пускай BC-x, тогда AC-x+3.
x²+(x+3)²=29, за теоремой Пифагора
x²+x²+6x+9=29
2x²+6x+9-29=0
2x²+6x-20=0
x²+3x-10=0
x²+5x-2x-10=0
x(x+5)-2(x+5)=0
(x-2)(x+5)=0
x-2=0, x+5=0
x=2, x=-5, но x>0, поэтому BC=2, AC=2+3=5.
5)Косинус-отношение прилежаещего катета к гипотенузе, тоесть cosB=a/c=6/10=0,6.
Тангенс-отношение протилежащего катета к прилежащему, тоесть tgA=b/a=8/6=4/3.
6)AH-сторона напротив угла 30°, поэтому равна половине гипотенузы, тоесть 14:2=7.
HC²=AC²-AH²,
HC²=196-49,
HC²=147,
HC=7√3.
∆ABH-равнобедренный, т.к. <BAH=45°, <ABH=180-90-45=45°, тогда BH=AH=7см.
AB²=BH²+AH²,
AB²=49+49,
AB²=98,
AB=7√2.