Высота BH треугольника ABC, проведённая к гипотенузе прямоугольного треугольника AC, делит его на части HC = 9 см и AH = 16 см. Найдите катеты треугольника ABC.
Так как треугольник равнобедренный,то его боковые стороны равны,мы не знаем какую они имеют длину,поэтому обозначим за Х,но мы знаем что каждая боковая сторона на 2 больше основания,следовательно основание у нас будет Х,а каждая боковая сторона Х + 2 Решение выглядит таким образом: Х + 2(Х + 2) = 10 Х + 2Х + 4 = 10 3Х + 4 = 10 3Х = 10 - 4 3Х = 6 Х = 6 : 3 Х = 2 Следовательно боковая сторона 2 + 2 = 4,вторая боковая сторона тоже 4,т.к. треугольник равнобедренный,а основание это просто Х а следовательно равно 2
Вписанный угол, который опирается на диаметр, равен 90 градусов. Углы К и F следовательно равны 90 градусов. Треугольники MKN и MFN - прямоугольные. Они равны по общей гипотенузе и катету KN = FN. А в равных треугольниках против равных сторон лежат равные углы. Против стороны FN лежит угол FMN, а против стороны KN лежит угол KMN. Стороны равны, значит равны и углы. Но, если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то и третьи углы у них равны. Значит, угол MNF равен углу MNK.
AB^2=16×25=400
AB=20
BC^2=9×25=225
BC=15