5 см
Объяснение:
1. Периметр треугольника АВД = АВ + ВД + АД = 30 см.
2. Периметр треугольника АВС = АВ + ВС + АС = 50 см.
3. АВ = ВС как боковые стороны равнобедренного треугольника.
4. АД = СД, так как высота ВД являясь ещё и медианой, делит АС пополам.
5. АД + СД = АС. АС = 2АД.
6. Подставляем АВ вместо ВС, 2АД вместо АС во вторую формулу:
2АВ + 2АД = 50 см. Делим это выражение на 2:
АВ + АД = 25 см. Подставляем значение этого выражения в первую формулу:
25 + ВД = 30 см.
ВД = 30 - 25 = 5 см.
ответ: ВД = 5 см.
ВО/ОН=2/1,
отсюда ОН=ВО/2=24/2=12 см
ВН=24+12=36 см
Рассмотрим треугольник АОН. Он прямоугольный, т.к. в равнобедренном треугольнике медиана, проведенная к основанию, является также и высотой. Зная катет АО в прямоугольном треугольнике АОН, найдем АН по теореме Пифагора:
АН = √AO² - OH² = √(9√2)² - 12² = √18=√9*2=3√2 см
Треугольники ВОЕ и ВНА подобные по первому признаку подобия: два угла одного соответственно равны двум углам другого. В нашем случае угол НВА - общий, а углы ВЕО и ВАН равны как соответственные углы при пересечении двух параллельных прямых ЕК и АС секущей АВ.
Для подобных треугольников можно записать:
ВО/ВН=ЕО/АН, отсюда
ЕО=ВО*АН/ВН=24*3√2/36=2√2 см
Поскольку медиана ВН делит ЕК пополам, то
ЕК=2*ЕО=2*2√2=4√2 см