решить две задачки по геометрии
1.Правильная четырехугольная призма описана около цилиндра,
радиус основания которого равен 10.
Площадь боковой поверхности призмы равна 80. Найдите высоту цилиндра.
2,Площадь боковой поверхности правильной четырёхугольной
пирамиды SABCD равна 104, а площадь полной поверхности этой пирамиды равна 120. Найдите площадь сечения, проходящего через вершину S этой пирамиды и через диагональ её основания.
2х-5у-1=0 и 2х-5у-34=0
х+3у-6=0 х+3у-6=0 умножаем на 2 это уравнение:
2х-5у-1=0
2х+6у-12=0, вычитаем из первого второе
-11у+11 = 0 у = -11/-11 = 1.
х = (5*1 + 1)/2 = 6/2 = 3. Пусть это точка А(3; 1).
2х-5у-34=0 2х-5у-34=0
х+3у-6=0 2х+6у-12=0 вычитаем:
-11у-22 = 0 у = 22/-11 = -2.
х = (5*(-2) + 34)/2 = 24/2 = 12. Пусть это точка С(12; -2).
Находим координаты точки О - середины диагонали АС:
О((3*12)/2=7,5; (1-2)/2=-0,5) = (7,5; -0,5).
У ромба диагонали взаимно перпендикулярны.
к(ВД) = -1/к(АС) = -1/(-1/3) = 3.
к(АС) = -1/3 определён из уравнения диагонали АС.
Тогда уравнение ВД: у = 3х + в.
Для определения параметра в подставим координаты точки О:
-0,5 = 3*7,5 + в,
в = -0,5 - 22,5 = -23.
Получаем уравнение диагонали ВД: у = 3х - 23.