Допускаю, что решение не относится к конструктивной геометрии. К простой - относится. Возможно, оно Вам Понадобятся : циркуль, линейка, угольник с прямым углом для построения параллельных прямых, транспортир, карандаш. 1). Чертим окружность данного радиуса. 2).Под ней чертим произвольную прямую с точкой касания с окружностью в точке Н. 3). От Н вправо откладываем НК, приближенно равную по длине данной стороне. 4). От К как от вершины строим данный угол с транспортира ( или по методике построения угла) 5). Из центра О проводим к этой стороне угла перпендикуляр ОТ по стандартному методу. 6). Через точку пересечения ОТ и окружности проводим параллельно КТ касательную к окружности. Точку ее пересечения с прямой НК обозначим А. Это вершина угла заданной величины. 7). От А откладываем длину данной стороны. Ставим точку В. ВН по свойству касательной из одной точки равен длине отрезка от В до точки касания окружности с третьей стороной. 8). Раствором циркуля, равным ВН, проводим из В, как из центра, полуокружность до пересечения с окружностью в точке Е. 9). Из В через т.Е проводим касательную до пересечения с прямой, проведенной из вершины А, т.е. со второй стороной угла А. Точка пересечения С будет третьей вершиной треугольника. Треугольник АВС построен.
А)В равнобедренном треугольнике два угла равны, поэтому они равны по 45 градусов, а третий угол равен 180 - 45 - 45 = 90, значит треугольник прямоугольный. Площадь прямоугольного треугольника равна половине произведения катетов, поэтому площадь равна 12,8 * 12,8=163,84. б)Если 60 градусов, то треугольник равносторонний, так как все углы в этом треугольнике равны по 60 градусов. Площадь равна по формуле: стороне в квадрате, корней из 3 деленная на 4. Подставим, получим 12,8 возведем в квадрат = 163,83 подпишем корень из3/4
Понадобятся :
циркуль, линейка, угольник с прямым углом для построения параллельных прямых, транспортир, карандаш.
1). Чертим окружность данного радиуса.
2).Под ней чертим произвольную прямую с точкой касания с окружностью в точке Н.
3). От Н вправо откладываем НК, приближенно равную по длине данной стороне.
4). От К как от вершины строим данный угол с транспортира ( или по методике построения угла)
5). Из центра О проводим к этой стороне угла перпендикуляр ОТ по стандартному методу.
6). Через точку пересечения ОТ и окружности проводим параллельно КТ касательную к окружности. Точку ее пересечения с прямой НК обозначим А. Это вершина угла заданной величины.
7). От А откладываем длину данной стороны. Ставим точку В. ВН по свойству касательной из одной точки равен длине отрезка от В до точки касания окружности с третьей стороной.
8). Раствором циркуля, равным ВН, проводим из В, как из центра, полуокружность до пересечения с окружностью в точке Е.
9). Из В через т.Е проводим касательную до пересечения с прямой, проведенной из вершины А, т.е. со второй стороной угла А. Точка пересечения С будет третьей вершиной треугольника.
Треугольник АВС построен.