Центр окружности лежит на биссектрисе угла. Радиусы окружности, проходящие через точки касания сторон угла с окружностью, будет перпендикулярны к сторонам угла. Таким образом, биссектриса, касательные (стороны угла от вершины до точек касания с окружностью) и радиусы образуют два одинаковых прямоугольных треугольника. И при любом положении угла относительно окружности (при вращении угла вокруг окружности) все размеры этих треугольников будут оставаться неизменными. Следовательно вершина угла опишет окружность , центр которой совпадет с центром заданной окружности, и радиусом равным расстоянию от вершины угла до центра окружности.
В тр-ке АВС ∠С=90. ОК, ОМ, ОН - радиусы, проведённые к сторонам АВ, ВС и АС соответственно. АК=14.4 см, ВК=25.6 см. Тр-ки АОК и АОН равны по признакам подобия и общей стороне, значит АН=АК=14.4 см Точно так-же ВМ=ВК=25.6 см СН=СМ=R АС=АН+СН=14.4+R ВС=ВМ+СМ=25.6+R Площадь тр-ка АВС можно посчитать по двум формулам: 1) S=АК·КВ=14.4·25.6=368.64 см² - формула подходит при вписанной окружности в прямоугольный тр-ник. 2) S=АС·ВС/2 (14.4+R)(25.6+R)/2=368.64 R²+40R-368.64=0 R1≈-47.72 - отрицательное значение не подходит, R2≈7.72 см.