За т. Пифагора: CB2=AB2-AC2
CB2=17 в кв- 15 в кв
СВ2= 289-225=64
СВ=8 см
SinA=8:17=0,5(округленно)
CosA=15:17=0,8(округленно)
TgA=8:15=0,5(округленно)
CtgA=15:8=1,875
ответ: 4) 288.
Решение.
Пусть ABC - треугольник, и угол B - ппрямой.
Пусть BК - высота, проведенная из вершины прямого угла B,
BМ - бисектриса, проведенная из угла B, при этом на стороне АС.
BК = 6, ВМ = 8.
точки находятся в таком порядке: A, К, М, C.
Начертите такой треугольник, чтобы было понятнее.
Угол АВМ = угол МВС = 45 гр = pi/4.
Обозначим угол КВМ = alfa.
cos(alfa) = ВК/ВМ = 6/8 = 3/4.
sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .
В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.
АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).
В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.
ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).
Площадь треугольника АВС:
S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).
cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4
cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4
Поэтоиу
S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.
Объяснение:
Треугольник АВс, М - точка касания на АВ, К - точка касания на ВС, Н- точка касания на АС, АМ=14. ВМ=12
АМ=АН =14 как касательные ко кружности, проведенные из одной точки,
ВМ=ВК=12,
АМ+АН+ВМ+ВК+СК+СН=периметр=84
14+14+12+12+СК+СН=84
84-52 = СК+СН, СК=СН=16,
АВ=26, ВС=28 АС=30
Площадь = корень (p x (p-a) x (p-b)x (p-c))?где р -полупериметр, остальное стороны
полупериметр = 84/2=42
Площадь= корень(42 х (42-26) х (42 х 28) х (42-30)) = корень (42 х 16 х 14 х 12) = 336
Держи........
Объяснение:
Фото