1) а=8, b=10, с=12. d=? Sполн=? V=?
V=abc=8*10*12=960
S=2(ab+bc+ac)=2(80 + 120 + 96) = 592
d^2 = a^2+b^2+c^2
d^2= 64 + 100 + 144=308
d=2sqrt{77}
2) a= 18,l= 40. L=?, Sполн=?, V=?
L^2 = 40^2 + 9^2 = 1681
L=41
Sполн= 18^2 + 4 * 1/2 * 40 * 9 = 1044
V = 1/3 * H * 18^2 = 1/3 * sqrt{1033} * 324 = 108sqrt{1033}
3) R= 7, L=11.Sос сеч=?, Sпов=?, V=?
Soc=1/2 * 14 * 11=77
Sпов=ПR(R+L)=П*7(7+11)=126П
V=1/3 * П * 49 * 6sqrt{2} = 98sqrt{2}П
4) a=12, b=15. Sпов=?
Sпов=2*П*12*(12+15)=648П
5) alpha =30 градусов, h= 15 см. Sпов=?
S=2ПRh=2П*5sqrt{3}*15=150sqrt{3}П
1. С= 48
А = 73
В = 59
2. угол С = 53
угол А = 37
3. 40 и 20
Объяснение:
1. ВО = высота АВС, тогда в треугольнике ВОС угол О = 90° так как это ВО высота, угол СВО = 42° за условием, и С = 90 - 42 = 48
ВО = высота АВС, тогда в треугольнике ВОА угол О = 90 ° за условием, угол ВАО = 17° за условием также, а А = 90 - 17 = 73.
Угол В = 180 - (А + С) = 180 - (73 + 48) = 180 - 121 = 59°
2. ВО - высота, пущенная из прямоугольного треугольника АВС на гипотенузу АС.
Тогда в треугольнике ВОС О = 90° за условием, СВО = 37° за условием, тогда угол С = 90-37=53
И второй острый угол А = 90 - 53 = 37
3. Пускай А = больше чем угол С в 2 раза, а угол В = 90.
Тогда х + 2х + 90 = 180
3х+90=180
3х=180-90
3х=90
х=30
2х=60
За теоремой про катет, противоположный углу 30 градусов, гипотенуза АС = 20+20=40
Если прямая, проведённая на плоскости через основание наклонной, перпендикуляр на её проекции, то она перпендикуляр на и самой наклонной