У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Основное тригонометрическое тождество:
sin²α + cos²α = 1, откуда
sinα = √(1 - cos²α) или sinα = - √(1 - cos²α)
Знак синуса зависит от координатной четверти, в которой расположен угол.
Но в данной задаче, вероятно, речь идет об остром угле прямоугольного треугольника, поэтому будем рассматривать синус угла только положительный.
tgα = sinα / cosα
1. cosα = 5/13
sinα = √(1 - 25/169) = √(144/169) = 12/13
tgα = 12/13 : 5/13 = 12/5
2. cosα = 15/17
sinα = √(1 - 225/289) = √(64/289) = 8/17
tgα = 8/17 : 15/17 = 8/15
3. cosα = 0,6
sinα = √(1 - 0,36) = √(0,64 ) = 0,8
tgα = 0,8/0,6 = 8/6 = 4/3
Объяснение: