Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
См. рисунок. решать задачу можно разными например, вот этими двумя. 1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45 2)рассмотрим треугольники АСМ и МСВ АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC) т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе. задача решена
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.