М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
unicorn337228
unicorn337228
12.04.2022 04:42 •  Геометрия

Дана правильная четырёхугольная пирамида, все рёбра которой равны 30 см.
Определи объём данной пирамиды.

👇
Открыть все ответы
Ответ:
olavishneva
olavishneva
12.04.2022

Линия пересечения плоскости  AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.

Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью  AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.

ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:

 

а) sin60^0=\frac{\sqrt3}{2}\\\\sin60^0=\frac{BH}{BC}\\\\BH=BCsin60^0=\frac{a\sqrt3}{2}

Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.

 

 б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:

 

tg60^0=\sqrt3\\\\tg60^0=\frac{HH_1}{BH}\\\\HH_1=\sqrt{3}\cdot BH=\sqrt{3}\cdot\frac{a\sqrt3}{2}=1,5a

 

в) Найти площадь боковой поверхности - самая простая часть этого задания:

S_6_o_k=Ph, где P и h - периметр основания и высота пераллелепипеда соответственно.

S_6_o_k=4a\cdot1,5a=6a^2

 

 

г) S=S_6_o_k+2S_O_C_H=6a^2+2a\cdot\frac{a\sqrt{3}}{2}=6a^2+a^2\sqrt{3}=a^2(6+\sqrt{3})

4,8(47 оценок)
Ответ:
lyubimov2006
lyubimov2006
12.04.2022

Пусть имеем ромб ABCD, т.O - точка пересечения диагоналей, KO- перпендикуляр плоскости ромба

Рассмотрим прямоугольный треугольник AOD.

 AD=46

3*OD=4AO

Пусть x - коэффициент пропорциональности,тогда

 AC=4x

OD=3x

(AO)^2+(OD)^2=(AD)^2

(4x)^2+(3x)^2=(45)^2

 16x^2+9x^2=2025

 25x^2=2025

x^2=81

x=9

то есть

AO=4*9=36

OD=3*9=27

 

Из треугольника OKD:

    (KD)^2=(OD)^2+(OK)^2

     (KD)^2=729+1296=2025

      KD=45

 

Из треугольника OKA

     (AK)^2=(AO)^2+(KO)^2

      (AK)^2=1296+1296=2596

       AK=36*sqrt(2)

то есть

     KD=KB=45

     KA=KC=36*sqrt(2)

4,7(83 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ