Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 см и 4 см. Высота призмы равна 10 см. Найдите площадь полной поверхности призмы.
2. Апофема правильной треугольной пирамиды равна 2см и наклонена к плоскости основания под углом 300. Найдите высоту пирамиды.
3. Найдите боковую поверхность прямоугольного параллелепипеда, если стороны основания 6 см и 8 см, а его диагональ наклонена к плоскости основания под углом 45°.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.