2R sin(&/2) ;2r tg(&/2) ; &- угол с вершиной вцентре тре--ка образованного стороной и ценром ; большой и малыйрадиусы - соответственно. Справедливо для любого правильного мн - ка.
тааакссс второе ты похоже пропустила буковку с когда написала м см ведь имеются ввиду?Я проходила это задание в 9 м классе
1. Во вписанном тр-ке сторона = радиусу = 9. 2. В описанном: высота правильного трка с основанием, = стороне, = 9. Угол при вершине тр-ка = 36. Находи по синусу.
третье
Апофема (от греч. apotithçмi — откладываю в сторону), 1) длина перпендикуляра, опущенного из центра правильного многоугольника на любую из его сторон .
Т.е. высота правильного треугольника со стороной 14. Формула в любом учебнике.
Параллельные прямые можно найти повсюду. Например, в современной технике. Экран телевизора - прямоугольник, его противолежащие стороны параллельны. Также в мебели: стороны крышки стола также параллельны. Сюда можно отнести шкаф, табуретку, холодильник, разделочную доску. Колонны зданий тоже строят параллельно друг другу. Рельсы на железнодорожных станциях укладываются параллельно. Параллельные прямые можно увидеть и от следов колёс автомобиля при прямолинейном движении. Параллельные прямые можно построить с линейки, противоположные стороны которой параллельны между собой. Параллельность сохраняется и в принадлежностях, которыми мы пользуемся каждый день: зубья вилки, расчёски.
первое
2R sin(&/2) ;2r tg(&/2) ; &- угол с вершиной вцентре тре--ка образованного стороной и ценром ; большой и малыйрадиусы - соответственно. Справедливо для любого правильного мн - ка.
тааакссс второе ты похоже пропустила буковку с когда написала м см ведь имеются ввиду?Я проходила это задание в 9 м классе
1. Во вписанном тр-ке сторона = радиусу = 9.
2. В описанном: высота правильного трка с основанием, = стороне, = 9. Угол при вершине тр-ка = 36. Находи по синусу.
третье
Апофема (от греч. apotithçмi — откладываю в сторону), 1) длина перпендикуляра, опущенного из центра правильного многоугольника на любую из его сторон .
Т.е. высота правильного треугольника со стороной 14. Формула в любом учебнике.