Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок. ========== Решение: Докажем, что . 1) Так как — биссектриса, то (биссектриса делит на два равные угла). 2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ). 3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так: Отсюда: Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей. Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)). Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда: ответ: 13. ========= ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
1. На прямой "а" откладываем отрезок АВ, равный отрезку PQ.
2. В точке А строим угол, равный данному, со стороной, лежащей на прямой "а".
3. В точке В строим угол, равный данному, со стороной, лежащей на прямой "а".
4. В точке пересечения сторон построенных углов получаем точку С.
Треугольник АВС построен.
Построение угла, равного данному:
Проводим окружность с центром в точке М - вершине данного угла.
Получим точки К и Н на сторонах данного нам угла.
Проводим окружность этого же радиуса (МН) с центром в точке А.
Получим точку К' на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К' проведем дугу радиуса КН и получим точку H'.
Через точки А и Н' проведем прямую - угол Н'АК' равен данному нам углу.
Проводим окружность радиуса МН с центром в точке В.
Получим точку К" на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К" проведем дугу радиуса КН и получим точку H".
Через точки B и Н" проведем прямую - угол Н"BК" равен данному нам углу.
Объяснение:
мне лень было делать на листочке:")