Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции. Пусть известны углы ∠BAD и ∠CDA, найдем углы ∠ABC и ∠BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.2В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC - y. Сумма углов любого треугольника равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° - 2x. В то же время из свойств трапеции: y + x + α = 180° и следовательно 180° - 2x + x + α = 180°. Таким образом, x = α. Мы нашли два угла трапеции: ∠BAC = 2x = 2α и ∠ABC = y = 180° - 2α.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° - 2α.
1) ΔАВС: ∠А=α, ∠С=2α, ∠В=180°-3α; 2) ΔADC: ∠A=α, ∠C=α, ∠D=180°-2α, значит ΔADC - равнобедренный, AD=DC. 3) Так как отрезок CD - биссектриса, то можно применить следующее свойство биссектрисы: AC:BC=AD:DB, по условию задачи DB:BC=1:2, значит DB=x, BC=2x. 6:2х=AD:x; AD=6x/2x=3 (см). AD=DC=3 см, АС=6 см - по условию. Получили треугольник со сторонами 3 см, 3 см и 6 см, но такого треугольника не существует, так как любая сторона треугольника должна быть меньше суммы двух других сторон (неравенство треугольника), а в этой задаче получилось, что одна из сторон равна сумме двух других (3+3=6). Это противоречие. Поэтому задача с таким условием не имеет решения. ответ: нет решения.