Треугольник ABC - фигура, полученная в результате поворота треугольника АВС вокруг начала координат на угол α против часовой стрелки.
а) Выполните построения отображений вершин треугольника АВС при данном повороте.
б) Найдите градусную меру угла поворота α.
Подставим значения тангенсов углов : tg60 = √3, tg45 = 1.
tg γ = 1/√((1/3)+1) = √3/2 ≈ 0,866025.
Высота параллелепипеда равна длине L бокового ребра, умноженного на синус угла его наклона.
Синус угла можно выразить через тангенс:
sin γ = tg γ /(1 + tg²γ) = √3/(2√1 + (3/4)) = √3/√7.
Н = L*sin γ = 7*√3/√7 = 7* 0,654654 = 4,582576 см.
Площадь основания равна So = 2*3 = 6 см².
Объём равен V =So*H = 6* 4,582576 = 27,49545 см³.