Если ось симметрии четырёхугольника проходит через его среднюю линию, то отрезки сторон, разделённые средней линией, перпендикулярны оси симметрии, значит они параллельны. Если осью симметрии четырёхугольника является его диагональ, то она делит его на два равных равнобедренных треугольника с основанием, лежащим на диагонали. Итак, в нашем четырёхугольнике все стороны равны и параллельны, значит он, как минимум, ромб. Средняя линия ромба параллельна двум сторонам и, являясь осью симметрии, перпендикулярна двум другим, значит стороны ромба попарно параллельны и перпендикулярны, значит наш четырёхугольник - квадрат. Доказано.
1, равенство двум сторонам и углу между ними, треугольники ACB и ADB, AB - общая сторона, углы ABC и ABD равны по условию, стороны CB и DB равны по условию; 2, треугольники MNK и MPK равны по двум сторонам и углу, MK - общая, углы NMK и MKP равны, MN и KP стороны равны, а вообще это параллелограмм, там противоположные стороны и углы все равны; 8, равны по трём сторонам треугольники ABC и ADC, тут очевидно какие стороны равны; 7, MNE и NMF треугольники равны, общая сторона MN, равные углы M и N, ME и NF стороны равны.
см.фото
Объяснение: