Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Площадь через сторону 14 и высоту к ней S = 1/2*14*12 = 7*12 = 84 см² Площадь через сторону 13 и высоту к ней S = 1/2*13*h₂ = 84 см² 1/2*13*h₂ = 84 h₂ = 84*2/13 = 168/13 см Площадь через сторону 15 и высоту к ней S = 1/2*15*h₃ = 84 см² 1/2*15*h₃ = 84 h₃ = 84*2/15 = 168/15 см
Найдём по известным сторонам первую высоту Полупериметр p = 1/2(13 + 14 + 15) = 21 см Площадь по формуле Герона S = √(21(21-13)(21-14)(21-15)) = √(21*8*7*6) = 7√(3*8*6) = 7*3√(8*2) = 7*3*4 = 84 см² Площадь через сторону 14 и высоту к ней S = 1/2*14*h₁ = 84 см² 1/2*14*h₁ = 84 h₁ = 84/7 = 12 см