Дан параллелограмм. Параллелограмм - четырёхугольник, у которого противоположные стороны попарно параллельны. Рассмотрим стороны ВС и АD и секущую АК, которая, в свою очередь, является биссектрисой угла А.
Итак, прямые параллельны, значит накрест лежащие углы ВКА и КАD равны (по св-ву).
AK-биссектриса угла А => уг. ВАК = уг. САD=> BAK = BKA => треугольник АВК равнобедренный (по признаку).
ВК=АВ=7см.
АВ=CD (по свойству параллелограмма)
ВС=ВК+КС=11см
ВС=АD=11см (по свойству параллелограмма)
Равсd=7+7+11+11=36см
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5