М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lisica99
Lisica99
10.01.2021 14:58 •  Геометрия

Вершина пирамиды проецируется в центр описанной около основания окружности, если:
а) боковые ребра пирамиды равны;
б) боковые ребра составляют с плоскостью основания равные углы;
в) боковые ребра составляют с высотой пирамиды равные углы.
Доказать. Составить обратные задачи. Доказать.
2. Вершина пирамиды проецируется в центр вписанной в основание окружности, если:
а) апофемы равны;
б) двугранные углы при ребрах основания равны;
в) апофемы составляют с высотой пирамиды равные углы.
Доказать. Составить обратные задачи. Доказать.
БЕЗ КРАТКИХ ОТВЕТОВ

👇
Открыть все ответы
Ответ:
vania666
vania666
10.01.2021

Объяснение:

Доказательство: Пусть даны две прямые a и b. Предположим, что они имеют более одной общей точки - точки M и N. Тогда через две точки M и N проходила бы не одна, а две прямые - прямые a и b. Но это противоречит аксиоме. Конец доказательства.

Что мне не нравится в доказательстве: Хорошо, мы доказали, что две разные прямые не могут иметь две общие точки. Но для меня ситуация выглядит так, что мы доказали только этот частный случай. А если мы возьмем три общие точки или больше? Не похоже, чтобы аксиома запрещяла, чтобы две разные прямые имели три общие точки.

Умом-то я понимаю, что если две прямые имеют более одной общей точки, то они являются одной и той же прямой. Но вот строго доказать, увы, не могу. И мне кажется, что для этого хватит все той же аксиомы. А вся моя проблема проистекает из-за неверного понимания самой аксиомы, которая скорее всего запрещяет и случаи с большим количеством общих точек.

МОЛОДЦЫ ДЕРЖИТЕСЬ УДАЧИ ВАМ -^-)

4,7(30 оценок)
Ответ:
dank02
dank02
10.01.2021
1)(х-9)^2+(у+1)^2+z^2=7^2
центр (9;-1;0) R=7
(немного не понятно в первой скобкие (х-9)или
(х+9),если (+),то первая воордината по оси х будет с о знаком (-) .просто (х 9) не должно быть.)
2)А (-3;0;4) R =8
(x+3)^2+y^2+(z-4)^2=64
3)(x-4)^2+(y+6)^2+z^2=9 A (4;-3;1)
подставим значения точки А х=4,у=-3,z=1 в уравнение сферы
(4-4)^2+(-3+6)^2+1^2=9
0+9+1=9 это не верно,значит точка А не лежит на сфере.10>9 значит точка А лежит за сферой.
4)х^2+у^2+ z^2+2z -2x=7
(x^2-2x)+y^2+(z^2+2z)-7==0
(x^2-2x+1)+y^2+(z^2+2z+1)-9=0
(x-1)^2+y^2+(z+1)^2=9
центр (1;0-1) R=3
4,4(14 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ