Тк ABCD - ромб, то все стороны = 10 см. угол А =С=60 градусам, угол В=D=120 градусам. BD - диагональ = 10 см. В ромбе диагонали перпендикулярны, точкой пересечения делятся пополам, являются биссектрисами углов; следовательно угол DBC = 60 градусам. О - точка пересечения диагоналей, ВО=ОD=5 см. Треуг. BOC - прямоугольный, значит СО можно найти по т. Пифагора. Диагональ СA = 2СО. Потом просто находишь по формуле площадь ромба ( площадь ромба равна полусумме произведения его диагоналей)
В расчетах могла ошибиться, но ход решения должен быть верный.
При пересечении двух параллельных прямых секущей образуются вертикальные углы, которые равны. В условии они по 73 градуса каждый.
Рассмотрим треугольник, который образован биссектрисой угла 107 градусов, вертикальным углом и углом, который надо найти ( под каким углом пересекает биссектриса вторую прямую ). Сумма углов треугольника равна 180 градусам.
2) 107 : 2 = 53,5 градуса ( т.к биссектриса делит угол пополам ).
3) 180 - 53,5 - 73 = 53,5 градуса.
ответ: 53,5 градуса.