Объяснение:<!--c-->
image
1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.
50
Объяснение:
1. Найдем длину диагоналей прямоугольника, лежащего в основании пирамиды. По теореме Пифагора:
дм.
AO = AC/2= 100/2 = 5 дм
2. Для наглядности, начертим сечение по плоскости на которой лежит треугольник AKC
По теореме Фалеса (при пересечении угла параллельными прямыми стороны угла делятся на пропорциональные отрезки) видно, что параллельные прямые AK и OM делят AC и KC на пропорциональные отрезки, так как AO=OC=AC/2 (точка O середина диагонали), верно равенство КМ=MC=KC/2.
Аналогично прямые КО и MN делят ONC на равные отрезки
ON=NC
По признаку равенства прямоугольных треугольников, ΔONM = ΔCNM
(по двум катетам).
Вычислим KC по теореме Пифагора:
Далее OM=MC=KC/2 =
Площадь равнобедренного треугольника BMD равна половине произведения основания BD на высоту OM
S BDM = BD*OM =
ответ: 2)2 3)1 4)2 5)2 6)3
Объяснение: