Задание 1. В правильной пирамиде площадь основания составляет 1/3 площади полной поверхности. Найти двугранный угол при основании пирамиды.
Примем длину стороны a основания за 1, периметр Р = 3а = 3. Тогда площадь основания So = a²√3/4 = √3/4. Площадь полной поверхности S =3So = 3√3/4. Площадь боковой поверхности равна: Sбок = S - So = (3√3/4) - (√3/4) = 2√3/4 = √3/2. А так как Sбок = (1/2)РА, то апофема А равна: А = 2Sбок/P = 2*(√3/2)/3 = √3/3. Высота основания h = a*cos30° = 1*(√3/2) = √3/2. Проекция апофемы на основание в правильной треугольной пирамиде равна (1/3)h = √3/6. Двугранный угол между боковой гранью и основанием равен плоскому углу α между апофемой и её проекцией на основание. cos α = ((1/3)h/A) = (√3/6)/(√3/3) = 3/6 = 1/2. α = arc cos(1/2) = 60°.
Задание 2. В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен 1. Определить боковую поверхность пирамиды.
Заданный отрезок длиной 1 - это часть биссектрисы угла боковой грани при основании от вершины до пересечения с апофемой. Сторона а основания равна: а = 2*1*cos(β/2) = 2cos(β/2). Периметр основания Р = 4а = 8cos(β/2). Апофема А равна: А = (а/2)*tgβ = cos(β/2)*tgβ. Тогда Sбок = (1/2)РА = (1/2)*(8cos(β/2))*(cos(β/2)*tgβ) = 4cos²(β/2)*tgβ (можно заменить функцию половинного угла на целого, но формула получится более громоздкая).
2. В треугольниках сходственными сторонами называются те стороны, которые лежат напротив их равных углов.
3. Коэффициентом подобия треугольников называется отношение сходственных сторон подобных треугольников.
4. в) BD/AC=DC/AB
5. Отношение периметров подобных треугольников равно коэффициенту подобия.
1,4 м = 140 см.
k=BC/B₁C₁ = 140/56 = 2.5
ответ: а) 2,5
6. б) параллельной какой-либо стороне
7. Отношение высот, проведенных к сходственным сторонам подобных треугольников равно отношению сходственных сторон.
8. б) отношению их площадей