Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Для удобства чтения, запоминания и записи каждая цифра в числе имеет свое место. Цифры в числе разбивают на так называемые классы: справа отделяют три цифры (первый класс), затем еще три (второй класс) и т.д. Каждая из цифр класса называется его разрядом. Разряды считаются справа налево, начиная с первого разряда - единицы, второй разряд - десятки, третий разряд - сотни, четвертый разряд - единицы тысяч и т.д. Тогда, чтобы применялось равенство 9:3=3 при делении десятков и единиц числа на 3, число десятков и единиц должно быть равно 9. Тогда заданное трехзначное число можно записать в виде: 199; 299; 399; 499; 599; 699; 799; 899; 999
Опустим высоту BH.
Равнобедренная трапеция, AH= (AD-BC)/2 =6
cosA= AH/AB =6/9 =2/3
sinA= √(1 -cosA^2) =√5/3
tgA= sinA/cosA =√5/2
ctgA= 1/tgA =2/√5