М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LeaV
LeaV
23.02.2022 18:32 •  Геометрия

Бісектриса кута прямокутника ділить його діагональ на відрізки завдовжки 1 см і 3 см. знайдіть площу прямо- кутника.

👇
Открыть все ответы
Ответ:
Хфк
Хфк
23.02.2022

Дано:

ABCS - правильная треугольная пирамида

SO - высота пирамиды        SO⊥(ABC)

Sбок = 96 см²

Sполн = 112 см²

-----------------------------

Найти:

AB - ?

SO - ?

1) Сначала запишем формулу площадь полной поверхности пирамиды, именно по такой формуле мы найдем площадь основания:

Sполн = Sбок + Sосн - Площадь полной поверхности пирамиды ⇒

Sосн = Sполн - Sбок = 112 см² - 96 см² = 16 см²

2) Поскольку треугольная пирамида правильная, то в основе лежит правильный треугольник. Следовательно, мы найдем сторону его основания:

S_{ocn} = \frac{\sqrt{3}}{4}a^{2} = \frac{\sqrt{3}}{4}AB^{2} - Площадь основания правильной пирамиды

AB = \sqrt{\frac{4*S_{ocn}}{\sqrt{3}}} - Сторона его основания

AB = √4×16 см²/√3 = √64 см²/√3 × √3/√3 = √64√3 см²/3 = \frac{8\sqrt{\sqrt{3}}cm}{\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}=\frac{8\sqrt[4]{3}\sqrt{3}cm} {3}=\frac{8\sqrt[4]{3}\sqrt[4]{3^{2}}cm}{3}=\frac{8\sqrt[4]{27}}{3}cm

3) Далее находим радиус вписанной окружности основания:

AB = MO×2√3 - нахождение стороны основания.

MO = AB/2√3 - радиус вписанной окружности основания

MO = \frac{\frac{8\sqrt[4]{27}}{3}cm}{2\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}=\frac{\frac{8\sqrt[4]{27}\sqrt[4]{3^{2}}}{3}cm}{2*3}=\frac{\frac{8\sqrt[4]{27*9}}{3}cm}{6} = \frac{\frac{8\sqrt[4]{243}}{3}cm}{6}=\frac{\frac{8\sqrt[4]{81*3}}{3}cm}{6}=\frac{\frac{8*3\sqrt[4]{3}}{3}cm}{6}=\frac{8\sqrt[4]{3}cm}{6}=\frac{4\sqrt[4]{3}}{3}cm

4) Далее находим площадь грани:

Sбок = 3Sграни ⇒ Sграни = Sбок/3 = 96 см²/3 = 32 см², тогда высота грани:

SM = 2Sграни/AB - Высота с площадью грани

SM = \frac{2*32cm^{2}}{\frac{8\sqrt[4]{27}}{3}cm}=\frac{24}{\sqrt[4]{27}}cm*\frac{\sqrt[4]{3}}{\sqrt[4]{3}}=\frac{24\sqrt[4]{3}}{\sqrt[4]{81}}cm=\frac{24\sqrt[4]{3}}{3}cm = 8\sqrt[4]{3}cm

5) И теперь находим высоту SO по теореме Пифагора:

SO = √SM² - MO² - нахождение высоты SO

SO = \sqrt{(8\sqrt[4]{3}cm)^{2}-(\frac{4\sqrt[4]{3}}{3}cm)^{2}} = \sqrt{64\sqrt{3}cm^{2}-\frac{16\sqrt{3}}{3}cm^{2}}=\sqrt{\frac{560\sqrt{3}}{9}cm^{2}}=\frac{\sqrt{560\sqrt{3}}}{3}cm = \frac{\sqrt{16*35\sqrt{3}}}{3}cm=\frac{4\sqrt{35\sqrt{3}}}{3}cm=\frac{4\sqrt{\sqrt{35^{2}}*\sqrt{3}}}{3}cm = \frac{4\sqrt{\sqrt{1225*3}}}{3}cm = \frac{4\sqrt{\sqrt{3675}}}{3}cm = \frac{4\sqrt[4]{3675}}{3}cm

ответ: AB = \frac{8\sqrt[4]{27}}{3}cm  SO = \frac{4\sqrt[4]{3675}}{3}cm

P.S.

Рисунок показан внизу:↓


Площадь боковой поверхности правильной треугольной пирамиды равна 96 см2, а площадь полной поверхнос
4,6(14 оценок)
Ответ:
kyvsaar
kyvsaar
23.02.2022
АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла  а = радиус умножить на синус двойного угла а. 
4,6(41 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ