М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hekaterina0606
hekaterina0606
07.10.2020 16:41 •  Геометрия

Отметьте верные утверждения.

👇
Ответ:
anastasyabesso1
anastasyabesso1
07.10.2020

1)

2)

5)

Объяснение:

1)

2)

центральный угол не может опираться на диаметр

полуразностью дуг, заключенный между ними

5)

вписанный угол равен половине дуги на которую опирается.

4,7(83 оценок)
Открыть все ответы
Ответ:
alekss84
alekss84
07.10.2020
Касательная это прямая. Уравнение прямой это y=kx+c. Коэффициент k равен производной от функции в данной точке, к чьему графику строится касательная. Значит надо брать производную от  2x^4-4x . Берём производную: y'=8x^3-4.
В точке x0=1 значение производной равно: 8*1^3-4=4
Значит уравнение касательной будет следующим: у=4x+c. Чтобы найти c, надо узнать значение самой функции в точке x0=1. Считаем:
2*1^4-4*1 =2-4=-2
И подставляем в уравнение: -2=4*x0+c; -2=4+с; с=-4-2; с=-6.
Окончательно получаем уравнение нашей касательной y=4x-6
Вроде так как-то.
4,5(70 оценок)
Ответ:
vladd010703
vladd010703
07.10.2020
Вторая задача показалась мне полезной :)
1. Биссектриса MP делит KN пропорционально сторонам, то есть
NP = 20; KP = 16;
отсюда по формуле длинны биссектрисы (одной из десятков :), L^2 = ab - xy)
MP^2 = 24*30 - 20*16 = 10*8*(3*3 - 2*2) = 400;
MP = 20;
2. Если продолжить AK и CK до пересечения со сторонами в точках A1 и C1, то из теоремы Чевы
(BC1/AC1)*(CA1/BA1)*(AM/CM) = 1;
так как AM = CM; BC1/AC1 = BA1/CA1;
кстати => A1C1 II AC;
и из теоремы Ван-Обеля
BC1/AC1 + BA1/CA1 = BK/KM = 1;
=> BC1/AC1 = BA1/CA1 = 1/2;
получается AC1 = 4; BC1 = 2; 
(Примечание. Все это можно получить и без теорем Чевы и Ван-Обеля, и довольно легко.
Самый красивый найти BC1/AC1 вот какой. Известно, что CC1 делит медиану BM (в точке K) пополам. Если провести AP II BM; так что P лежит на продолжении CB за точку B; то СС1 очевидно поделит - при продолжении за C1 -  пополам и AP; кроме того, так же очевидно CB = BP; то есть AB и CC1 - медианы треугольника APC; отсюда BC1/AC1 = 1/2; как для любой медианы :), и точно также можно НЕЗАВИСИМО показать BA1/CA1 = 1/2;)
Отсюда в трапеции AC1A1C
A1C1 = AC/3; диагонали делятся пропорционально основаниям, и получается
C1K = CK/3 = 4/3; A1K = AK/3 = 5/3;
из теоремы косинусов для треугольника AKC1 со сторонами AC1 = 4; KC1 = 4/3; AK = 5
4^2 = 5^2 + (4/3)^2 - 2*5*(4/3)*cos(α);
где α = ∠C1KA = ∠CKA1;
аналогично для треугольника A1KC
(A1C)^2 = 4^2 + (5/3)^2 - 2*(5/3)*4*cos(α);
если вычесть одно из другого, получится
(A1C)^2 - 4^2 = 4^2 + (5/3)^2 - 5^2 - (5/3)^2 = -8;
(AC1)^2 = 4^2 - 8 = 8; A1C = 2√2;
ВС = (3/2)*A1C = 3√2;
вот как-то так.
4,5(49 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ