1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
Дано: АВСD-параллелограмм, угол А-на 56 градусов меньше угла В Найти: A, B, C, D Решение: Пусть угол А=х градусов Тогда угол В=х+56 градусов Так как противоположные стороны параллелограмма параллельны, то можно составить уравнение. х+х+56=180 2х+56=180 х=62
Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
что и угол ∠АВС.
Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC =>
=> BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда: