Рассмотрим ΔABD - это равнобедренный треугольник с равными углами B и D, так как он является половиной ромба ABCD. Из ∠В при основании равнобедренного ΔABD проведена биссектриса ВЕ, т.к. в условии дано, что ∠АВЕ=∠DBE.
Теперь рассмотрим ΔEBD: по условию известно, что ∠BED=120°, также из чертежа видно, что ∠EDB треугольника EBD=∠ADB треугольника ABD, это общий для них угол.
Примем за х величину ∠EBD в ΔEBD,
тогда ∠EDB=180-(∠BED+∠EBD)=180-(120-х)=180-120-х=60-х
∠ABD в ΔABD будет равен х+х=2х, т.к. ВЕ биссектриса этого угла и ∠EBD+∠ABE как раз составляют ∠ABD.
Далее составляем уравнение: 2х=60-х, так как угол D общий в этих Δ.
Решаем: 2х+х=60
3х=60
х=60/3=20° это ∠EBD
∠ABD=2*20=40°, значит ∠АВС ромба будет равен 40*2=80°, т.к. диагональ BD ромба является биссектрисой ∠ АВС. ∠ADC=∠АВС=80°, т.к. противоположные углы в ромбе равны.
∠BAD ΔABD=180-40-40=100° и он же является ∠А в ромбе ABCD, значит ∠А ромба ABCD = 100°. ∠С тоже=100°, т.к. он противоположен ∠А.
Таким образом, в ромбе ABCD: ∠A=∠C=100° и ∠B=∠D=80°
Вроде бы всё...
Объяснение:
1) луч
2) лучи обозначаются через две латинские буквы или одной маленькой латинской буквой.
3) дополнительные лучи – это лучи, имеющие общее начало, противоположные направления и лежащие на одной прямой
4) угол
5) одной заглавной латинской буквой ( вершина угла ), двумя малыми латинскими буквами ( стороны угла )
6) если его обе плоскости лежат на одной прямой
7) две полуплоскости
8) два угла называются равными - если их можно совместить наложением
9) биссектриса угла — луч с началом в вершине угла, делящий угол на две равные части
10) в градусах
11) 180 градусов
12) острый
13) у которого градус меньше 90
14) у которого градус больше 120
15) 1) равные углы имеют равные величины равные величины 2) если он состоит из двух углов
16) равные углы имеют равные величины