Так если один из углов при основании = 60 градусов, то второй угол при основании тоже равен 60 градусов (св-ва р.б. трапеции), вторая бокова сторона равно 8 см (опять же св-во р.б. трапеции)
проводим высоту вн из угла в (допустим трапеция авсд) , получаем прямоугольный треугольник, т.к. мы знаем два угла а=60градусов, и вна равен 90 градусов, то угол авн=30 градусов, значит ан равен 5 см, тк (в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы),если мы проведем из угла с высоту ск, то получим равный авн треугольник, следовательнокд равен 5 см, значит основание равно 8 + 10= 18
теперь периметр 8 + 18 + 10х2 = 46 см
проверьте на всякий случай, возможны опечатки , писала второпях :)
Ну тут изи
Треугольники ABO и ACO прямоугольные (Pадиус, проведенный в точку касания, перпендикулярен касательной). <ABO =<ACO =90 °. Центр окружности O лежит на биссектрисе угла образованными касательними
(<BAO =<CAO ).
Из прямоугольного ΔABO :
AO² =AB²+BO² =(5√3)² +5²= 5²*3 +5² =5²(3+1) =5²*4 =(5*2)²;
AO =5*2=10.
BO =AO/5 ⇒ <BAO =30° (катет лежащий против угла 30 градусов равен половине гипотенузы)
<BAC =2*<BAO =2*30° =60°.
: .
<BAO =α ; <BAC =2<BAO =2α.
tqα =BO/AB = 5/5√3 =1/√3.⇒ α =30° ; <BAC =2α =2*30° =60°.
Подробнее - на -