Пусть в тр-ках авс и а (1)в (1)с (1) 1) равны медианы вк и в (1)к (1) , 2) угол авк =углу а (1)в (1)к (1) 3) угол свк = углу с (1)в (1)к (1) доказать, что тр-к авс = тр-ку а (1)в (1)с (1) доказательство в тр-ке авс продолжим медиану вк и отложим км =вк и точку м соединим с точками а и с аналогичные построения сделаем в тр-ке а (1)в (1)с (1), тогда вм =в (1)м (1) 1) тр-к акв =тр-ку скм ( по двум сторонам вк=км и ак=кс и углу между ними -они вертикальные) 2) аналогично тр-к а (1)к (1)в (1) =тр-ку с (1)к (1)м (1) отсюда следует 3) ав=мс =а (1)в (1) =м (1)с (1), < авм = < вмс =< а (1)в (1)м (1) = < в (1)м (1)с (1) 4) тогда тр-к всм = тр-ку в (1)с (1)м (1) по стороне вм =в (1)м (1) и двум прилежащим углам 5) отсюда вс =в (1)с (1) и ав=мс =а (1)в (1) =м (1)с (1), 6) проэтому тр-к авс = тр-ку а (1)в (1)с (1) по двум сторонам и углу между ними второй способ состоит в том, что по теореме " площадь тр-ка равна половине произведения двух сторон на синус угла между ними выражают стороны ав и вс через медиану вк и углы авк и свк применяя соотношение s (авс) = s (авк) + s (свк) и доказывают, что ав= а (1)в (1) и вс= в (1)с (1)
Точки А, В. С лежат на одной прямой. Через любые три точки, не лежащие на одной прямой (А, В и А1), проходит плоскость. притом только одна. ( Аксиома). Через две параллельные прямые ( АА1 и ВВ1) можно провести плоскость, притом только одну. Прямые АА1 и ВВ1 лежат в одной плоскости, СС1 параллельна АА1 и ВВ1⇒ лежит в той же плоскости, и эта плоскость пересекает данную плоскость по прямой А1В1. Проведем АК║А1В1. В параллелограмме АКВ1А1 отрезок МС1=АА1=а. Тогда в ∆ АВК сторона ВК=b-a Рассмотрим ∆ АВК и ∆ АСМ. Угол САК - общий, СМ║ВК ⇒ соответственные углы при параллельных СМ и ВК равны ⇒ ∆ АВК~∆ АСМ с коэффициентом подобия k=АС:АВ=АС:(АС+СВ)=2/5=0,4 СМ=0,4•ВК=0,4•(b-a) CC1=C1М+СМ=а+0,4b-0,4a=0,6a+0,4b