М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
omsbksrj
omsbksrj
04.06.2022 12:55 •  Геометрия

Если угол при вершине на 57° больше угла при основании,
то в равнобедренном треугольнике угол при основании равен

👇
Открыть все ответы
Ответ:
Strelkov18
Strelkov18
04.06.2022
Нам дана окружность № 1, радиус ее 12 см. Найдем длину окружности № 1: L1 = 2П(R1) = 2П12 = 24П. Эту окружность разогнули в дугу с центральным углом в 135 градусов. То есть, если эту дугу дорисовать до окружности, то получится новая окружность № 2. Чтобы найти радиус этой новой окружности найдем длину дуги окружности, которая приходится на один градус этой окружности № 2 и умножим на 360 градусов. Получаем длину окружности № 2: L 2 = (24П/135) * 360 = 64П. Теперь мы знаем длину окружности № 2 и знаем формулу длины окружности, следовательно можем найти радиус окружности № 2. L 2 = 2П (R2); R2 = (L 2) / 2П; R2 = 64П / 2П = 32 ед. Рассмотрим треугольник в окружности № 2, образованный радиусами и хордой, стягиваемой дугой. По теореме косинусов имеем: (хорда2)^2 = (радиус)^2 + (радиус)^2 - 2*радиус*радиус*Cos(135); (хорда2) = корень из [2*радиус^2 - 2*радиус^2*Cos(3П/4)]; (хорда2) = корень из [2*радиус^2 *(1- Cos(3П/4)]; (хорда2) = корень из [2*32^2 *(1+ [корень из 2] / 2)]; хорда2 = 32 корень из (2 + корень из 2).
4,6(43 оценок)
Ответ:
2yva293
2yva293
04.06.2022
Раз призма правильная и раз в шар она вписана, то центр шара соответствует среедине высоты призмы. То есть основания призмы находятся на расстоянии полвысоты от центра шара. Значит, основания призмы вписаны в окружность, разиус которой легко выразить через высоту призмы и радиус шара.
С другой стороны, основания правильной призмы - равносторонний треугольник. И радиус описанной вокруг него окружности легко выразить через сторону этого треугольника.
Вот так и получается два уравнения, из которых постепенно можно найти высоту призмы.
4,7(59 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ