высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой.
длинную диагональ основания можно найти по теореме косинусов. знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен
180-60=120°
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a2 = 32 + 52 - 2bc·cos(120)
a²=34-30·(-0,5)=49
a=7
теперь очередь дошла до высоты параллелограмма.
h²=25²-7²=574
h=24 cм
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.