Какие задачи можно решить, используя циркуль и линейку без делений? 1. построить угол, равный данному 2. разделить отрезок пополам 3. разделить угол на две равные части 4. разделить угол на три разные части
Обозначим стороны основания за 1. Двугранный угол при основании определяется в осевом сечении по перпендикуляру к стороне основания.Отсюда высота пирамиды равна половине основания - 0,5 = 1/2. Апофема равна √((1/2)²+(1/2)²) = √(2/4) = √2/2. Боковое ребро равно √((1/2)²+(√2/2)²) = √(1/4 + 2/4) = √3 / 2. Рассмотрим треугольник, где катеты - половина основания и апофема, а гипотенуза - боковое ребро пирамиды. Искомый двугранный угол между смежными боковыми гранямиопределяется в плоскости, перпендикулярной боковому ребру пирамиды. Эта плоскость в сечении образует треугольник со сторонами, включающими линию пересечения основания и 2 перпендикуляра к ребру. Этот перпендикуляр есть высота Н треугольника, равного половине боковой грани пирамиды. По свойству подобных треугольников запишем пропорцию: Н / (1/2) = (√2/2) / (√3/2) Н = √2 /(2√3). cos A = (b²+c²-a²) / (2bc) = (2*2/(4*3)-2/4) / (2*2/12) = -4/12 = -1/2. Этому косинусу соответствует угол 120 градусов.
Рисунок к задаче простой, сделать его сумеет каждый. Пусть этот прямоугольник АВСД, ВД - диагональ. АВ=а АД - длинная сторона прямоугольника Перпендикуляры из А и С делят диагональ на части ВК и КД. Пусть ВК равна х, тогда КД=2х, а ВД=3х Треугольник АВД прямоугольный. АК в нем - высота. АВ и АД - катеты Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. АВ=а а²=ВК*ВД а²=х*3х 3х²=а² АД²=КД*ВД=2х*3х АД²=2*3х² 3х²=а² ( см. выше) АД²=2а² АД=а√2
ответ:разделить отрезок пополам, разделить угол на две равные части и построить угол, равный данному
Объяснение: