предыдущее решение полностью соответствует, я просто хочу показать геометрически понятное решение.
Треугольник надо достроить до параллелограмма, тогда третья сторона и удвоенная медиана - его диагонали. Поэтому половина третьей стороны - это медиана в треугольнике со сторонами (23, 11, 20), проведенная к стороне 20 :).
Теперь можно воспользоваться формулой для медианы, но если не охота запоминать много формул - можно просто воспользоваться дважды теоремой косинусов (именно так и выводится эта формула)- для треугольника (23, 11, 20) и треугольника (23, с/2, 10), где с - третья сторона исходного треугольника (а с/2 - медиана в треугольнике (23, 11, 20), делящая сторону 20 пополам).
Если обозначить за Ф - угол между стороной 23 и медианой 10 исходного треугольника, то
11^2 = 23^2 + 20^2 - 2*20*23*cos(Ф);
(c/2)^2 = 23^2 + 10^2 - 2*10*23*cos(Ф);
Умножаем на 2 второе уравнение и вычитаем первое
2*(с/2)^2 - 11^2 = 23^2 + 2*10^2 - 20^2;
с^2/2 = 11^2 + 23^2 + 2*10^2 - 20^2 = 450;
c = 30;
В основании призмы лежит прямоугольный треугольник, в котором, по теореме Пифагора, определим длину гипотенузы АВ.
АВ2 = ВС2 + ВС2 = 82 + 62 = 64 + 36 = 100.
АВ = 10 см.
Так как боковая грань АА1В1В квадрат, то АА1 = АВ = ВВ1 = А1В1 = 10 см.
Определим периметр треугольника АВС.
Р = АВ + ВС + АС = 10 + 8 + 6 = 24 см.
Определим площадь боковой поверхности.
Sбок = Р * А1А = 24 * 10 = 240 см2.
ответ: Площадь боковой поверхности равна 240 см2.
Объяснение:
решал такую задачу только ты как-то неверно написал