1. Прямые на плоскости могут пересекаться, совпадать, быть параллельными. 2. Две прямые на плоскости называются перпендикулярными, если при пересечении они образуют 4 прямых угла. 3. Параллельные прямые - это прямые которые не имеют точку пересечения 4. Теорема - это утверждение которое нужно доказать. 5. 1) Если две прямые пересечены секущей и накрест лежащие углы равны, то прямые параллельны. 2) Если две прямые пересечены секущей и соответственные углы равны, то прямые параллельны. 3) Если две прямые пересечены секущей и сумма односторонних углов равна 180 градусам, то прямые параллельны 6. 1) Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. 2) Если две параллельные прямые пересечены секущей, то соответсвенные углы равны. 3) Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180 градусам. 7. Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых 8. не знаю
Объяснение:1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем