1) Рассмотрим треугольник АВК - он равнобедренный (по свойству о биссектрисе, проведённой в параллелограмме)
в нём:
АК = АВ (т.к боковые стороны)
2) Пусть КД - Х см. , тогда АК - Х=1 , а т.к АК = АВ (по выше доказанному), следовательно АВ - тоже Х+1, а т.к в параллелограмме все стороны попарено параллельны, то ВС - 2Х+1, а СД - Х +1, а т.к сумма всех сторон равна 40 см. (по условию), то составим уравнение:
Х + Х + 1 + Х + 1 + 2Х + 1 + Х + 1 = 40
Дальь ше решаешь уравнение и находишь оставшиеся стороны алгебрачиски. Всё, и ответ будет готов.
Давай предположим что у нас есть трапеция ABCD. AB и CD боковые, BC и AD основания. Нам известно что BC + AD = 44. Пусть тогда угол А = 60°. Теперь давай проведем перпендикуляр (высоту, отрезок) от точки B к стороне AD. Получаем треугольник ABE ( E это точка куда опущен перпендикуляр.) По свойству сумма углов треугольника равна 180°. То, если угол BEA равен 90°, а угол А равен 60°, следовательно угол АВЕ равен 30°. По свойству напротив угла в 30° лежит отрезок равный половине гипотенузы. Получается если АВ это гипотенуза и равна она 24 см, то АЕ будет равен половине АВ, т.е. АЕ=АВ : 2=24:2= 12 см. Сторона АЕ равна 12 см. Следовательно если мы опустим из точки С перпендикуляр к стороне АD то будет то же самое как с другим треугольником. Т.е. AE=DF=12 см. Если ВС+АD=44 см, а АЕ=DF=12 см, то получаем уравнение
Дано:
АВСД- пар-м.
ВК- биссектриса угла В
АК - АД = 1 см
Р(периметр) = 40 см.
Найти:
Стороны пар-ма
1) Рассмотрим треугольник АВК - он равнобедренный (по свойству о биссектрисе, проведённой в параллелограмме)
в нём:
АК = АВ (т.к боковые стороны)
2) Пусть КД - Х см. , тогда АК - Х=1 , а т.к АК = АВ (по выше доказанному), следовательно АВ - тоже Х+1, а т.к в параллелограмме все стороны попарено параллельны, то ВС - 2Х+1, а СД - Х +1, а т.к сумма всех сторон равна 40 см. (по условию), то составим уравнение:
Х + Х + 1 + Х + 1 + 2Х + 1 + Х + 1 = 40
Дальь ше решаешь уравнение и находишь оставшиеся стороны алгебрачиски. Всё, и ответ будет готов.