Объяснение:
б=6
а²=1²+2²=5
а=√5
тг= а/б
тг=√5/6
tg(A)= a /b
https://www.fxyz.ru/%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B_%D0%BF%D0%BE_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8/%D1%83%D0%B3%D0%BB%D1%8B_%D1%83%D0%B3%D0%BE%D0%BB/%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8_%D0%BE%D1%81%D1%82%D1%80%D0%BE%D0%B3%D0%BE_%D1%83%D0%B3%D0%BB%D0%B0/%D1%82%D0%B0%D0%BD%D0%B3%D0%B5%D0%BD%D1%81_%D1%83%D0%B3%D0%BB%D0%B0_tg/
3)треугольники равны по 1(общей) стороне и 2 прилежащим углам
4)треугольники равны по 2 сторонам и прилежащим к ним углу
5)треугольники равны по 1(общей) стороне и 2 прилежащим углам
6)Треугольники образуют равнобедренный треугольник ⇒ сторона MS = SO ⇒ ΔQMS = ΔSOT (так как ∠QSM = ∠TSO как вертик. Сторона MS = SO и ∠QMS = ∠SOT) ⇒ MS + ST = OS + SQ ⇒ QO = MT ⇒ ΔMTO = ΔMQO (по 2 сторонам и прилежащим к ним углу)
7)ΔROQ = ΔOPD (по 2 сторонам и прилежащим к ним углу) ⇒ RO = PO и DO = OQ ⇒ RO + OD = PO + OQ ⇒ RD = QP ⇒ ΔEDR = ΔPEQ (по 2 сторонам и прилежащим к ним углу)
8)∠ACB = ∠ECD (как вертик.) ∠BAC = ∠CED(как смежные) ⇒ ΔABC = ΔCED(по 1 стороне и 2 прилежащим углам)
13)CE = CA так как CD + DE = AB + BC ⇒ ΔACE равноб. ⇒ ∠A = ∠E ⇒ ΔABF = ΔKDE (по 1 стороне и 2 прилежащим углам)
14)∠ABF = ABC - 90*
∠DCE = DCB - 90* ⇒ ∠ABF = ∠DCE
так как BC║AD то BF = CE ⇒ ΔABF = ΔDCE(по 1 стороне и 2 прилежащим углам)