Для того, чтобы все точки прямой a*x+b*y+c=0 находились на равных расстояниях от точек А и В, эта прямая должна быть перпендикулярна прямой АВ и проходить через середину отрезка АВ. Пусть x1 и y1 - координаты точки А, а x2 и y2 - координаты точки В; составим уравнение прямой АВ:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1), (x-4)/(6-4)=(y-4)/(9-4), (x-4)/2=(y-4)/5, y=5/2*x-6. Отсюда следует, что угловой коэффициент этой прямой k1=5/2. А так как прямая a*x+b*y+c=0 перпендикулярна прямой АВ, то её угловой коэффициент k2=-1/k1=-2/5. Пусть точка С - середина отрезка АВ; найдём её координаты x3 и y3:
x3=(x1+x2)/2=5, y3=(y1+y2)/2=13/2. Теперь составляем уравнение прямой a*x+b*y+c=0: y-y3=k2*(x-x3), y-13/2=-2/5*(x-5), 4*x+10*y-85=0.
1. Координаты середины отрезка - полусумма координат начала и конца. Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г). 3. Координаты вектора - разность координат конца и начала этого вектора. АВ{-2-2;7-7} или AB{-4;0}. 4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10. 5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности: (-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит. 6. Длина радиуса этой окружности - модуль вектора М0. |M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)
ответ: 4*x+10*y-85=0.
Объяснение:
Для того, чтобы все точки прямой a*x+b*y+c=0 находились на равных расстояниях от точек А и В, эта прямая должна быть перпендикулярна прямой АВ и проходить через середину отрезка АВ. Пусть x1 и y1 - координаты точки А, а x2 и y2 - координаты точки В; составим уравнение прямой АВ:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1), (x-4)/(6-4)=(y-4)/(9-4), (x-4)/2=(y-4)/5, y=5/2*x-6. Отсюда следует, что угловой коэффициент этой прямой k1=5/2. А так как прямая a*x+b*y+c=0 перпендикулярна прямой АВ, то её угловой коэффициент k2=-1/k1=-2/5. Пусть точка С - середина отрезка АВ; найдём её координаты x3 и y3:
x3=(x1+x2)/2=5, y3=(y1+y2)/2=13/2. Теперь составляем уравнение прямой a*x+b*y+c=0: y-y3=k2*(x-x3), y-13/2=-2/5*(x-5), 4*x+10*y-85=0.