Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².
- правильная треугольная пирамида SABC,
- высота пирамиды SO = Н,
- угол наклона бокового ребра L к основанию равен α .
Примем сторону основания за а.
Проекция AO бокового ребра AS на основание правильной пирамиды равна 2/3 высоты h основания.
Из треугольника ASO находим AO = H/tg α.
Высота h в 1,5 раза больше АО, то есть h = (3/2)H/tg α = 3H/(2tg α),
тогда сторона а основания равна:
а = h/(cos30°) = 3H/(2tg α)/(√3/2) = √3H/tg α.
Площадь основания So = a²√3/4 = 3√3H²/(4tg² α) кв.ед.
Тогда объём пирамиды равен:
V = (1/3)SoH = (1/3)*(3√3H²/(4tg² α))*H = √3H³/(4tg² α) куб.ед.
2) Дано:
правильная четырёхугольная пирамида SABCД,
- высота пирамиды SO = Н,
- угол наклона бокового ребра L к основанию равен α .
Половина ОА диагонали АС равна Н/tg α.
Тогда сторона а основания а = Н√2/tg α.
So = a² = 2H²/(tg² α).
V = (1/3)*(2H²/(tg² α))*H = 2H³/(3tg² α).