Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
Если центр описанной около треугольника окружности лежит внутри треугольника, значит треугольник остроугольный. Площадь треугольника равна половине произведения его сторон на синус угла между этими сторонами. В нашем случае S = (1/2)AB*BC*Sinα или 3√3 = 2√3*3*Sinα. Следовательно, Sinα = (3√3)/6√3 = 1/2. Итак, угол В в треугольнике АВС равен 30°. Cos30° = √3/2. По теореме косинусов находим сторону АС треугольника: АС = √(АВ²+ВС²-2*АВ*ВС*Cos30) или √(48+9-2*12√3*√3/2)=√21. Ну, а радиус описанной около треугольника окружности находится по формуле: R = a*b*c/4S или в нашем случае R=4√3*3*√21/12√3 = √21. ответ: радиус описанной около треугольника окружности равен √21.
известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы.
в основании египетский треугольник, т.е. гипотенуза =10
высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10)
h² = 13² - 5² = (13-5)(13+5) = 8*18
h = 4*3 = 12